ON SOME NEW TENSORS AND THEIR PROPERTIES IN A FINSLER SPACE-I

S. C. Rastogi
Retired Director \& Professor, Department of Mathematics, Seth Vishambhar Nath Institute of Engineering, Research and Teaching (SVNIERT), Barabanki, Uttar Pradesh, India

Received: 26 Mar 2019
Accepted: 04 Apr 2019
Published: 30 Apr 2019

Abstract

In (1990), Certain new tensors in a Finsler space were introduced and studied by the author [4]. The purpose of the present paper is to define and study some new and very useful symmetric and skew-symmetric tensors of second and third order in a Finsler space of three dimensions. In the present paper, while studying three dimensional Finsler spaces the author has defined a new symmetric tensor $D_{i j k}$, which satisfies $D_{i j k} l^{i}=0$ and $D_{i j k} g^{j k}=D_{i}=D n_{i}$. Besides defining this tensor and following the definition of C-reducible Finsler spaces Matsumoto [2] the author has further defined and studied D-reducible Finsler spaces. A symmetric tensor $Q_{i j k}$ based on $D_{i j k}$ and similar to $P_{i j k}$ is also introduced and its relationship with other known tensors is studied. Several tensors corresponding to curvature tensor $S_{i j k h}$ are also studied in F^{3}.

KEYWORDS: Three-Dimensional Finsler Space, D-Tensor, Q-Tensor

INTRODUCTION

Let F^{3} be a three- dimensional Finsler space with the Moor's frame $\left(\mathrm{l}_{\mathrm{i}}, \mathrm{m}_{\mathrm{i}}, \mathrm{n}_{\mathrm{i}}\right)$. Corresponding to this frame, the metric tensor and (h) hv-torsion tensors are given by Matsumoto [3] and Rund [6]
$\mathrm{g}_{\mathrm{ij}}=\mathrm{l}_{\mathrm{i}} \mathrm{l}_{\mathrm{j}}+\mathrm{m}_{\mathrm{i}} \mathrm{m}_{\mathrm{j}}+\mathrm{n}_{\mathrm{i}} \mathrm{n}_{\mathrm{j}}$
And

$$
\begin{equation*}
\mathrm{C}_{\mathrm{ijk}}=\mathrm{C}_{(1)} \mathrm{m}_{\mathrm{i}} \mathrm{~m}_{\mathrm{j}} \mathrm{~m}_{\mathrm{k}}+\mathrm{C}_{(2)} \mathrm{n}_{\mathrm{i}} \mathrm{n}_{\mathrm{j}} \mathrm{n}_{\mathrm{k}}+\Sigma_{(\mathrm{ijk})}\left\{\mathrm{C}_{(3)} \mathrm{m}_{\mathrm{i}} \mathrm{n}_{\mathrm{j}} \mathrm{n}_{\mathrm{k}}-\mathrm{C}_{(2)} \mathrm{m}_{\mathrm{i}} \mathrm{~m}_{\mathrm{j}} \mathrm{n}_{\mathrm{k}}\right\} \tag{1.2}
\end{equation*}
$$

In equation (1.2), $\Sigma_{(\mathrm{ijk})}\{ \}$, represents cyclic permutation of indices $\mathrm{i}, \mathrm{j}, \mathrm{k}$ and summation. In a three- dimensional Finsler space h and v-covariant derivatives of a tensor are respectively given in Matsumoto [3]
$\mathrm{K}_{\mathrm{m} / \mathrm{r}}^{\mathrm{h}}=\partial_{\mathrm{r}} \mathrm{K}^{\mathrm{h}}{ }_{\mathrm{m}}-\mathrm{N}_{\mathrm{r}}^{\mathrm{j}} \Delta_{\mathrm{j}} \mathrm{K}_{\mathrm{m}}^{\mathrm{h}}+\mathrm{K}_{\mathrm{m}}^{\mathrm{k}} \mathrm{F}_{\mathrm{k}}{ }^{\mathrm{h}}{ }_{\mathrm{r}}-\mathrm{K}_{\mathrm{k}}^{\mathrm{h}} \mathrm{F}_{\mathrm{m}}{ }^{\mathrm{k}}{ }_{\mathrm{r}}$
And
$\mathrm{K}_{\mathrm{m} / \mathrm{r}}^{\mathrm{h}}=\Delta_{\mathrm{r}} \mathrm{K}_{\mathrm{m}}^{\mathrm{h}}+\mathrm{K}_{\mathrm{m}}^{\mathrm{j}} \mathrm{C}_{\mathrm{j} \mathrm{r}}^{\mathrm{h}}-\mathrm{K}_{\mathrm{j}}^{\mathrm{h}} \mathrm{C}_{\mathrm{m}}{ }^{\mathrm{j}}{ }_{\mathrm{r}}$
where $\partial_{\mathrm{r}}=\partial / \partial \mathrm{x}^{\mathrm{r}}$ and $\Delta_{\mathrm{r}}=\partial / \partial \mathrm{y}^{\mathrm{r}}$.
From equations (1.3) and (1.4), we can easily obtain [3] 2
$\mathrm{l}^{\mathrm{i}}{ }_{\mathrm{j}}=0, \mathrm{~m}^{\mathrm{i}}{ }_{\mathrm{j}}=\mathrm{n}^{\mathrm{i}} \mathrm{h}_{\mathrm{j}}, \mathrm{n}^{\mathrm{i}}{ }_{\mathrm{j}}=-\mathrm{m}^{\mathrm{i}} \mathrm{h}_{\mathrm{j}}$,
and
$L 1^{i}{ }_{/ / j}=h_{j}^{i}, L m^{i}{ }_{/ / j}=-1^{i} m_{j}+n^{i} v_{j}, L n^{i}{ }_{/ / j}=-1^{i} n_{j}-m^{i} v_{j}$
where $v_{j}=v_{2) 3 \gamma} e_{\gamma j \mathrm{j}}$ and $h_{j}=H_{233} \mathrm{e}_{\gamma j \mathrm{j}}$.
The second and third curvature tensors in the sense of E. Cartan [1] are given by
$P_{\mathrm{ijkh}}=\zeta_{(\mathrm{i}, \mathrm{j})}\left\{\mathrm{A}_{\mathrm{jkh} / \mathrm{i}}+\mathrm{A}_{\mathrm{ikr}} \mathrm{P}_{\mathrm{jh}}^{\mathrm{r}}\right\}$
$\mathrm{S}_{\mathrm{ijkh}}=\zeta_{(\mathrm{h}, \mathrm{k})}\left\{\mathrm{A}_{\mathrm{ihr}} \mathrm{A}_{\mathrm{jk}}^{\mathrm{r}}\right\}$
Such that
$S_{(\mathrm{h}, \mathrm{k})}\left\{\mathrm{P}_{\mathrm{ijkh}}\right\}=-\mathrm{S}_{\mathrm{ijkh} / 0}$
where $\zeta_{(h, k)}\{ \}$ means interchange of h and k and subtraction.

SOME NEW TENSORS OF SECOND ORDER

Definition

In a Finsler space of three dimensions F^{3}, we define non-zero second order symmetric tensors $\mathrm{A}_{\mathrm{ij}}(\mathrm{x}, \mathrm{y})$ and $\mathrm{B}_{\mathrm{ij}}(\mathrm{x}, \mathrm{y})$ given by
$\mathrm{A}_{\mathrm{ij}}(\mathrm{x}, \mathrm{y})=\sum_{(\mathrm{ijj}}\left\{1_{\mathrm{i}} \mathrm{m}_{\mathrm{j}}\right\}, \mathrm{B}_{\mathrm{ij}}(\mathrm{x}, \mathrm{y})=\sum_{(\mathrm{ij})}\left\{\mathrm{l}_{\mathrm{i}} \mathrm{n}_{\mathrm{j}}\right\}$
which satisfy
$A_{i j / k}=h_{k} B_{i j}, B_{i j / k}=-h_{k} A_{i j}$,
$A_{i j / k}=L^{-1}\left\{h_{i k} m_{j}+h_{j k} m_{i}-21_{i} 1_{j} m_{k}+V_{k} B_{i j}\right\}$
and
$\mathrm{B}_{\mathrm{ij} / \mathrm{k}}=\mathrm{L}^{-1}\left\{\mathrm{~h}_{\mathrm{ik}} \mathrm{n}_{\mathrm{j}}+\mathrm{h}_{\mathrm{jk}} \mathrm{n}_{\mathrm{i}}-2 \mathrm{l}_{\mathrm{i}} \mathrm{l}_{\mathrm{j}} \mathrm{n}_{\mathrm{k}}-\mathrm{v}_{\mathrm{k}} \mathrm{A}_{\mathrm{ij}}\right\}$
From these equations we can obtain

Theorem

In a three- dimensional Finsler space F^{3}, tensors A_{ij} and B_{ij} satisfy
$\mathrm{A}_{\mathrm{i} j / \mathrm{k}} \mathrm{l}^{\mathrm{i}}+\mathrm{L}^{-1}\left(2 \mathrm{l}_{\mathrm{j}} \mathrm{m}_{\mathrm{k}}-\mathrm{n}_{\mathrm{j}} \mathrm{v}_{\mathrm{k}}\right)=0, \mathrm{~B}_{\mathrm{ij} / / \mathrm{k}} \mathrm{l}^{\mathrm{i}}+\mathrm{L}^{-1}\left(2 \mathrm{l}_{\mathrm{j}} \mathrm{n}_{\mathrm{k}}-\mathrm{m}_{\mathrm{j}} \mathrm{v}_{\mathrm{k}}\right)=0$,
$\sum_{(\mathrm{ijk})}\left\{\mathrm{A}_{\mathrm{ij} / \mathrm{k}}-\mathrm{h}_{\mathrm{k}} \mathrm{B}_{\mathrm{ij}}\right\}=0, \sum_{(\mathrm{j} \mathrm{j})}\left\{\mathrm{B}_{\mathrm{ij} / \mathrm{k}}+\mathrm{h}_{\mathrm{k}} \mathrm{A}_{\mathrm{ij}}\right\}=0$
3
$\sum_{(\mathrm{ijk})}\left\{\mathrm{A}_{\mathrm{ij} / \mathrm{k}}-\mathrm{L}^{-1}\left(2 \mathrm{~h}_{\mathrm{ij}} \mathrm{m}_{\mathrm{k}}-2 \mathrm{l}_{\mathrm{i}} \mathrm{l}_{\mathrm{j}} \mathrm{m}_{\mathrm{k}}+\mathrm{v}_{\mathrm{k}} \mathrm{B}_{\mathrm{ij}}\right)\right\}=0$
and
$\sum_{(\mathrm{ijk})}\left\{\mathrm{B}_{\mathrm{ij} / \mathrm{k}}-\mathrm{L}^{-1}\left(2 \mathrm{~h}_{\mathrm{ij}} \mathrm{n}_{\mathrm{k}}+2 \mathrm{l}_{\mathrm{i}} \mathrm{l}_{\mathrm{j}} \mathrm{n}_{\mathrm{k}}-\mathrm{v}_{\mathrm{k}} \mathrm{A}_{\mathrm{ij}}\right)\right\}=0$

Definition

In a Finsler space of three dimensions F^{3}, we define non-zero second order symmetric tensors $\mathrm{T}_{\mathrm{ij}}(\mathrm{x}, \mathrm{y})$ and $\mathrm{U}_{\mathrm{ij}}(\mathrm{x}, \mathrm{y})$ given by
$\mathrm{T}_{\mathrm{ij}}=\sum_{(\mathrm{ij})}\left\{\mathrm{m}_{\mathrm{i}} \mathrm{n}_{\mathrm{j}}\right\}, \mathrm{U}_{\mathrm{ij}}=\mathrm{m}_{\mathrm{i}} \mathrm{m}_{\mathrm{j}}-\mathrm{n}_{\mathrm{i}} \mathrm{n}_{\mathrm{j}}$
These tensors satisfy
$T_{i j / k}=-2 h_{k} U_{i j}, U_{i j / k}=2 h_{k} T_{i j}$,
$\mathrm{T}_{\mathrm{ij} / \mathrm{k}}=-\mathrm{L}^{-1}\left\{\mathrm{l}_{\mathrm{i}} \mathrm{T}_{\mathrm{jk}}+\mathrm{l}_{\mathrm{j}} \mathrm{T}_{\mathrm{ki}}+2 \mathrm{v}_{\mathrm{k}} \mathrm{U}_{\mathrm{ij}}\right\}$
and
$\mathrm{U}_{\mathrm{ij} / \mathrm{k}}=-\mathrm{L}^{-1}\left(\mathrm{l}_{\mathrm{i}} \mathrm{U}_{\mathrm{jk}}+\mathrm{l}_{\mathrm{j}} \mathrm{U}_{\mathrm{ki}}-2 \mathrm{v}_{\mathrm{k}} \mathrm{T}_{\mathrm{ij}}\right)$
which lead to

Theorem

In a three- dimensional Finsler space F^{3}, tensors T_{ij} and U_{ij} satisfy
$\mathrm{T}_{\mathrm{ij} / / \mathrm{k}} \mathrm{I}^{\mathrm{i}}=-\mathrm{L}^{-1} \mathrm{~T}_{\mathrm{jk}}, \mathrm{U}_{\mathrm{i} \mathrm{i} / \mathrm{k}} \mathrm{I}^{\mathrm{i}}=-\mathrm{L}^{-1} \mathrm{U}_{\mathrm{jk}}, \mathrm{T}_{\mathrm{ij} / / 0}=0, \mathrm{U}_{\mathrm{ij} / 0}=0$,
$\sum_{(\mathrm{j} \mathrm{k})}\left\{\mathrm{T}_{\mathrm{ij} / \mathrm{k}}+2 \mathrm{U}_{\mathrm{ij}} \mathrm{h}_{\mathrm{k}}\right\}=0, \sum_{(\mathrm{ijk})}\left\{\mathrm{U}_{\mathrm{ij} / \mathrm{k}}-2 \mathrm{~h}_{\mathrm{k}} \mathrm{T}_{\mathrm{ij}}\right\}=0$,
$\sum_{(\mathrm{ijk})}\left\{\mathrm{T}_{\mathrm{ij} / \mathrm{k}}+2 \mathrm{~L}^{-1}\left(\mathrm{l}_{\mathrm{i}} \mathrm{T}_{\mathrm{jk}}+\mathrm{v}_{\mathrm{i}} \mathrm{U}_{\mathrm{jk}}\right)\right\}=0$,
$\sum_{(\mathrm{ijk})}\left\{\mathrm{U}_{\mathrm{ij} / \mathrm{k}}+2 \mathrm{~L}^{-1}\left(\mathrm{l}_{\mathrm{i}} \mathrm{U}_{\mathrm{jk}}-\mathrm{v}_{\mathrm{i}} \mathrm{T}_{\mathrm{j} \mathrm{k}}\right)\right\}=0$.

Definition

In a Finsler space of three dimensions F^{3}, we define non-zero second order skew-symmetric tensors $\mathrm{E}_{\mathrm{ij}}(\mathrm{x}, \mathrm{y})$, $\mathrm{F}_{\mathrm{ij}}(\mathrm{x}, \mathrm{y})$ and $\mathrm{V}_{\mathrm{ij}}(\mathrm{x}, \mathrm{y})$, given by
$\mathrm{E}_{\mathrm{ij}}=\varsigma_{(\mathrm{ij})}\left\{\mathrm{l}_{\mathrm{i}} \mathrm{m}_{\mathrm{j}}\right\}, \mathrm{F}_{\mathrm{ij}}=\zeta_{(\mathrm{ij})}\left\{\mathrm{l}_{\mathrm{i}} \mathrm{n}_{\mathrm{j}}\right\}, \mathrm{V}_{\mathrm{ij}}=\varsigma_{(\mathrm{ij})}\left\{\mathrm{m}_{\mathrm{i}} \mathrm{n}_{\mathrm{j}}\right\}$
These tensors satisfy
$\mathrm{E}_{\mathrm{ij} / \mathrm{k}}=\mathrm{h}_{\mathrm{k}} \mathrm{F}_{\mathrm{ij},}, \mathrm{F}_{\mathrm{ij} / \mathrm{k}}=-\mathrm{h}_{\mathrm{k}} \mathrm{E}_{\mathrm{ij},}, \mathrm{V}_{\mathrm{ij} / \mathrm{k}}=0$
$\mathrm{E}_{\mathrm{ij} / \mathrm{k}}=\mathrm{L}^{-1}\left(\mathrm{v}_{\mathrm{k}} \mathrm{F}_{\mathrm{ij}}-\mathrm{n}_{\mathrm{k}} \mathrm{V}_{\mathrm{ij}}\right), \mathrm{F}_{\mathrm{ij} / \mathrm{k}}=\mathrm{L}^{-1}\left(\mathrm{~m}_{\mathrm{k}} \mathrm{V}_{\mathrm{ij}}-\mathrm{v}_{\mathrm{k}} \mathrm{E}_{\mathrm{ij}}\right)$
$\mathrm{V}_{\mathrm{ij} / \mathrm{k}}=\mathrm{L}^{-1}\left(\mathrm{l}_{\mathrm{i}} \mathrm{V}_{\mathrm{jk}}+\mathrm{l}_{\mathrm{j}} \mathrm{V}_{\mathrm{ki}}\right)$
4
From equation (2.18), (2.19) and (2.20) we can obtain

Theorem

In a three -dimensional Finsler space F^{3}, Tensors $\mathrm{E}_{\mathrm{ij}}, \mathrm{F}_{\mathrm{ij}}$ and V_{ij} satisfy
$\mathrm{E}_{\mathrm{ij} / \mathrm{k}} \mathrm{I}^{\mathrm{i}}=\mathrm{L}^{-1} \mathrm{v}_{\mathrm{k}} \mathrm{n}_{\mathrm{j}}, \mathrm{F}_{\mathrm{ij} / \mathrm{k}} \mathrm{I}^{\mathrm{i}}=-\mathrm{L}^{-1} \mathrm{v}_{\mathrm{k}} \mathrm{m}_{\mathrm{j}}, \mathrm{V}_{\mathrm{ij} / / \mathrm{k}} 1^{\mathrm{i}}=\mathrm{L}^{-1} \mathrm{~V}_{\mathrm{jk}}$ and
$\sum_{(\mathrm{ijk})}\left\{\mathrm{E}_{\mathrm{ij} / \mathrm{k}}-\mathrm{h}_{\mathrm{k}} \mathrm{F}_{\mathrm{ij}}\right\}=0, \sum_{(\mathrm{ijk})}\left\{\mathrm{F}_{\mathrm{ijk}}+\mathrm{h}_{\mathrm{k}} \mathrm{E}_{\mathrm{ij}}\right\}=0$,
$\sum_{(\mathrm{ijk})}\left\{\mathrm{E}_{\mathrm{ij} / \mathrm{k}^{-}} \mathrm{L}^{-1} \mathrm{v}_{\mathrm{k}} \mathrm{F}_{\mathrm{ij}}\right\}=0, \sum_{(\mathrm{ijk})}\left\{\mathrm{F}_{\mathrm{ij} / \mathrm{k}}+\mathrm{L}^{-1} \mathrm{v}_{\mathrm{k}} \mathrm{E}_{\mathrm{ij}}\right\}=0$
$\sum_{(\mathrm{j} \mathrm{k})}\left\{\mathrm{V}_{\mathrm{ij} / \mathrm{k}}-2 \mathrm{~L}^{-1} \mathrm{l}_{\mathrm{i}} \mathrm{V}_{\mathrm{jk}}\right\}=0$.

From equations (2.1), (2.8) and (2.17), we can easily establish

Theorem

In a three dimensional Finsler space F^{3}, tensors $\mathrm{A}_{\mathrm{ij}}, \mathrm{B}_{\mathrm{ij}}, \mathrm{T}_{\mathrm{ij}}$, U_{ij}, $\mathrm{E}_{\mathrm{ij}} \mathrm{F}_{\mathrm{ij}}$ and V_{ij} satisfy $\varsigma_{(\mathrm{jk})}\left\{\mathrm{A}_{\mathrm{hj}} \mathrm{A}_{\mathrm{ik}}\right\}=\mathrm{E}_{\mathrm{kj}} \mathrm{E}_{\mathrm{hi}}, \varsigma_{(\mathrm{jk})}\left\{\mathrm{B}_{\mathrm{hj}}\right.$ $\left.\mathrm{B}_{\mathrm{ik}}\right\}=\mathrm{F}_{\mathrm{kj}} \mathrm{F}_{\mathrm{hi}} \cdot \zeta_{(\mathrm{jk})}\left\{\mathrm{T}_{\mathrm{hj}} \mathrm{T}_{\mathrm{ik}}\right\}=\mathrm{V}_{\mathrm{hi}} \mathrm{V}_{\mathrm{kj}}=\zeta_{(\mathrm{jk})}\left\{\mathrm{U}_{\mathrm{hj}} \mathrm{U}_{\mathrm{ik}}\right\}=\zeta_{(\mathrm{jk})}\left\{\mathrm{h}_{\mathrm{hj}} \mathrm{h}_{\mathrm{ik}}\right\}$.

SOME NEW TENSORS OF THIRD ORDER

Definition

In a Finsler space of three- dimensions F^{3}, we define $\Delta_{\mathrm{k}} \mathrm{A}_{\mathrm{ij}}=\mathrm{A}_{\mathrm{ij} . \mathrm{k}}, \Delta_{\mathrm{k}} \mathrm{B}_{\mathrm{ij}}=\mathrm{B}_{\mathrm{ij} . \mathrm{k}}, \Delta_{\mathrm{k}} \mathrm{T}_{\mathrm{ij}}=\mathrm{T}_{\mathrm{ij} . \mathrm{k}}$ and $\Delta_{\mathrm{k}} \mathrm{U}_{\mathrm{ij}}=\mathrm{U}_{\mathrm{ij} . \mathrm{k}}$ such that

$$
\begin{align*}
& \mathrm{A}_{\mathrm{ij} . \mathrm{k}}=\mathrm{A}_{\mathrm{ij} / \mathrm{k}}+\mathrm{m}_{\mathrm{r}} \sum_{(\mathrm{ij})}\left\{\mathrm{l}_{\mathrm{j}} \mathrm{C}_{\mathrm{ik}}^{\mathrm{r}}\right\} \tag{3.1}\\
& \mathrm{B}_{\mathrm{ij} . \mathrm{k}}=\mathrm{B}_{\mathrm{ij} / / \mathrm{k}}+\mathrm{n}_{\mathrm{r}} \sum_{(\mathrm{ij})}\left\{\mathrm{l}_{\mathrm{j}} \mathrm{C}_{\mathrm{ik}}^{\mathrm{r}}\right\} \tag{3.2}\\
& \mathrm{T}_{\mathrm{ij} . \mathrm{k}}=\mathrm{T}_{\mathrm{ij} / \mathrm{k}}+\mathrm{m}_{\mathrm{r}} \sum_{(\mathrm{ij})}\left\{\mathrm{n}_{\mathrm{j}} \mathrm{C}_{\mathrm{ik}}^{\mathrm{r}}\right\}+\mathrm{n}_{\mathrm{r}} \sum_{(\mathrm{ij})}\left\{\mathrm{m}_{\mathrm{j}} \mathrm{C}_{\mathrm{ik}}^{\mathrm{r}}\right\} \tag{3.3}\\
& \mathrm{U}_{\mathrm{ij} . \mathrm{k}}=\mathrm{U}_{\mathrm{ij} / \mathrm{k}}+\mathrm{m}_{\mathrm{r}} \sum_{(\mathrm{ij})}\left\{\mathrm{m}_{\mathrm{j}} \mathrm{C}_{\mathrm{ik}}^{\mathrm{r}}\right\}-\mathrm{n}_{\mathrm{r}} \sum_{(\mathrm{ij})}\left\{\mathrm{n}_{\mathrm{j}} \mathrm{C}_{\mathrm{ik}}^{\mathrm{r}}\right\} \tag{3.4}
\end{align*}
$$

These equations can be further solved with the help of
$m_{r} C_{i k}^{r}=C_{(1)} m_{i} m_{k}-C_{(2)} T_{i k}+C_{(3)} n_{i} n_{k}$
$n_{r} C_{i k}^{r}=-C_{(2)} m_{i} m_{k}+C_{(3)} T_{i k}+C_{(2)} n_{i} n_{k}$
From above equations we can obtain

Theorem

In a Finsler space of three - dimensions $\mathrm{F}^{3}, \mathrm{~A}_{\mathrm{ij} .0}=0, \mathrm{~B}_{\mathrm{i} .0}=0, \mathrm{~T}_{\mathrm{ij} .0}=0, \mathrm{U}_{\mathrm{ij} .0}=0$.

Definition

In a Finsler space of three - dimensions F^{3}, we define $\Delta_{\mathrm{k}} \mathrm{E}_{\mathrm{ij}}=\mathrm{E}_{\mathrm{ij} . \mathrm{k}}$,
$\Delta_{\mathrm{k}} \mathrm{F}_{\mathrm{ij}}=\mathrm{F}_{\mathrm{ij} . \mathrm{k}}$ and $\Delta_{\mathrm{k}} \mathrm{V}_{\mathrm{ij}}=\mathrm{V}_{\mathrm{ij} . \mathrm{k}}$ such that 5
$\mathrm{E}_{\mathrm{ij} . \mathrm{k}}=\mathrm{E}_{\mathrm{ij} / \mathrm{k}}-\mathrm{m}_{\mathrm{r}} \varsigma_{(\mathrm{ij})}\left\{\mathrm{l}_{\mathrm{j}} \mathrm{C}_{\mathrm{ik}}^{\mathrm{r}}\right\}$
$\mathrm{F}_{\mathrm{ij} \mathrm{j} . \mathrm{k}}=\mathrm{F}_{\mathrm{ij} / \mathrm{k}}-\mathrm{n}_{\mathrm{r}} \varsigma_{(\mathrm{ij})}\left\{\mathrm{l}_{\mathrm{j}} \mathrm{C}_{\mathrm{ik}}^{\mathrm{r}}\right\}$
$V_{\mathrm{ij} . \mathrm{k}}=\mathrm{V}_{\mathrm{ij} / \mathrm{k}}+\mathrm{m}_{\mathrm{r}} \zeta_{(\mathrm{ij})}\left\{\mathrm{n}_{\mathrm{j}} \mathrm{C}_{\mathrm{ik}}^{\mathrm{r}}\right\}-\mathrm{n}_{\mathrm{r}} \varsigma_{(\mathrm{ij})}\left\{\mathrm{m}_{\mathrm{j}} \mathrm{C}_{\mathrm{ik}}^{\mathrm{r}}\right\}$
From above equations we can obtain

Theorem

In a Finsler space of three- dimensions $\mathrm{F}^{3}, \mathrm{E}_{\mathrm{i} .0}=0, \mathrm{~F}_{\mathrm{ij} .0}=0$ and $\mathrm{V}_{\mathrm{ij} .0}=0$.

THIRD ORDER SYMMETRIC TENSOR

$\mathbf{D}_{\mathrm{ijk}}$. Let $\mathrm{D}_{\mathrm{ijk}}$ be a symmetric tensor in a Finsler space F^{3} satisfying $\mathrm{D}_{\mathrm{ijk}} 1^{\mathrm{i}}=0, \mathrm{D}_{\mathrm{ijk}} \mathrm{g}^{\mathrm{jk}}=\mathrm{D}_{\mathrm{i}}=\mathrm{D} \mathrm{n}_{\mathrm{i}}$. Any tensor of the above type in F^{3} can be expressed as
$\mathrm{D}_{\mathrm{ijk}}=\mathrm{D}_{(1)} \mathrm{m}_{\mathrm{i}} \mathrm{m}_{\mathrm{j}} \mathrm{m}_{\mathrm{k}}+\mathrm{D}_{(2)} \mathrm{n}_{\mathrm{i}} \mathrm{n}_{\mathrm{j}} \mathrm{n}_{\mathrm{k}}+\Sigma_{(\mathrm{jjk})}\left\{\mathrm{D}_{(3)} \mathrm{m}_{\mathrm{i}} \mathrm{m}_{\mathrm{j}} \mathrm{n}_{\mathrm{k}}+\mathrm{D}_{(4)} \mathrm{m}_{\mathrm{i}} \mathrm{n}_{\mathrm{j}} \mathrm{n}_{\mathrm{k}}\right\}$
where $\mathrm{D}_{(1)}, \mathrm{D}_{(2)}, \mathrm{D}_{(3)}$ and $\mathrm{D}_{(4)}$ are scalars to be determined.
Multiplying equation (4.1) by g^{jk}, we obtain on simplification
$D n_{i}=\left(D_{(1)}+D_{(4)}\right) m_{i}+\left(D_{(2)}+D_{(3)}\right) n_{i}$,
which easily leads to
$\mathrm{D}_{(2)}+\mathrm{D}_{(3)}=\mathrm{D}, \mathrm{D}_{(1)}+\mathrm{D}_{(4)}=0$.
Thus equation (4.1) can also be expressed as
$D_{i j k}=D_{(1)} m_{i} m_{j} m_{k}+D_{(2)} n_{i} n_{j} n_{k}+\Sigma_{(i j k}\left\{D_{(3)} m_{i} m_{j} n_{k}-D_{(1)} m_{i} n_{j} n_{k}\right\}$,
which leads to the following :

Definition

In a three -dimensional Finsler space F^{3}, the symmetric tensor $D_{i j k}$ satisfying $D_{i j k} 1^{i}=0, D_{i j k} g^{j k}=D n_{i}$ and given by equation (4.3) shall be called a D-tensor.

Remarks

It is to be noticed that $D_{i j k}$, which looks similar to $C_{i j k}$ exists for $\mathrm{n} \geq 3$ only.
Equation (4.3) can alternatively be expressed as
$\mathrm{D}_{\mathrm{ijk}}=\Sigma_{(\mathrm{ijk})}\left\{\mathrm{X}_{\mathrm{k}} \mathrm{m}_{\mathrm{i}} \mathrm{m}_{\mathrm{j}}+\mathrm{Y}_{\mathrm{k}} \mathrm{n}_{\mathrm{i}} \mathrm{n}_{\mathrm{j}}\right\}$
where
$X_{k}=(1 / 3) D_{(1)} m_{k}+D_{(3)} n_{k}$
6
and
$Y_{k}=(1 / 3) D_{(2)} n_{k}-D_{(1)} m_{k}$
Equation (4.3) can also be expressed as
$\mathrm{D}_{\mathrm{ijk}}=\Sigma_{(\mathrm{ijk}}\left\{\mathrm{X}_{\mathrm{ij}} \mathrm{m}_{\mathrm{k}}+\mathrm{Y}_{\mathrm{ij}} \mathrm{n}_{\mathrm{k}}\right\}$
where $\mathrm{X}_{\mathrm{ij}}=\mathrm{X}_{\mathrm{i}} \mathrm{m}_{\mathrm{j}}$ and $\mathrm{Y}_{\mathrm{ij}}=\mathrm{Y}_{\mathrm{i}} \mathrm{n}_{\mathrm{j}}$.
Now we shall consider some special cases.

Case I

If we assume $D_{i \mathrm{ijk}}=0$, equation (4.3) on simplification gives $D_{(2)}=-D_{(3)}$. Conversely, if we assume $D_{(2)}=-D_{(3)}$, in equation (4.3), it gives $D_{i}=0$. Hence we have:

Theorem

The necessary and sufficient condition for the vector D_{i} to vanish in F^{3} is given by $D_{(2)}=-D_{(3)}$.
Case II. If in a special case we assume that $\mathrm{D}_{(1)}=0, \mathrm{D}_{(3)}=0, \mathrm{D}_{(2)}=\mathrm{D}$, equation (4.3) can be expressed as
$D_{i j k}=D^{-2} D_{i} D_{j} D_{k}$
Conversely, if we assume (4.8), it leads to $D_{(1)}=0, D_{(3)}=0, D_{(2)}=D$. Hence we have:

Theorem

The necessary and sufficient condition for $D_{i j k}$ to be expressed as in (4.7), in a three dimensional Finsler space F^{3}, is that $\mathrm{D}_{(1)}=0, \mathrm{D}_{(3)}=0, \mathrm{D}_{(2)}=\mathrm{D}$.

Case III

If $\mathrm{D}_{(1)}=0, \mathrm{D}_{(2)}=\mathrm{D}_{(3)}=\mathrm{D} / 2$, equation (4.3) gives
$D_{\mathrm{ijk}}=(\mathrm{D} / 2)\left[\mathrm{n}_{\mathrm{i}} \mathrm{n}_{\mathrm{j}} \mathrm{n}_{\mathrm{k}}+\sum_{(\mathrm{j} \mathrm{j} k}\left\{\mathrm{m}_{\mathrm{i}} \mathrm{m}_{\mathrm{j}} \mathrm{n}_{\mathrm{k}}\right\}\right]$
Hence we have:

Theorem

In a three dimensional Finsler space F^{3}, if $D_{(1)}=0, D_{(2)}=D_{(3)}=D / 2, D_{i j k}$ is given by (4.9).
Case IV. If $\mathrm{D}_{(1)}=0, \mathrm{D}_{(2)}=0, \mathrm{D}_{(3)}=\mathrm{D}$, equation (4.3) gives
$\mathrm{D}_{\mathrm{ijk}}=\mathrm{D} \Sigma_{(\mathrm{j} \mathrm{k})}\left\{\mathrm{m}_{\mathrm{i}} \mathrm{m}_{\mathrm{j}} \mathrm{n}_{\mathrm{k}}\right\}$
Conversely, if $\mathrm{D}_{\mathrm{ijk}}$ is given by (4.10), equation (4.3) gives $\mathrm{D}=\mathrm{D}_{(3)}, \mathrm{D}_{(2)}=0$ and
$\mathrm{D}_{(\mathrm{l})}\left[\mathrm{m}_{\mathrm{i}} \mathrm{m}_{\mathrm{j}} \mathrm{m}_{\mathrm{k}}-\Sigma_{(\mathrm{ijk})}\left\{\mathrm{m}_{\mathrm{i}} \mathrm{n}_{\mathrm{j}} \mathrm{n}_{\mathrm{k}}\right\}\right]=0$
7
If we multiply equation (4.11) by m^{i}, we get $D_{(1)} U_{j k}=0$ and if we multiply equation (4.11) by n^{i}, we get $\mathrm{D}_{(1)} \mathrm{T}_{\mathrm{jk}}=$ 0 . As we know that neither $U_{j k}$ nor $T_{j k}$ vanish, therefore $D_{(1)}=0$. Hence we have:

Theorem

In a three dimensional Finsler space F^{3}, the necessary and sufficient condition for $D_{(1)}=0, D_{(2)}=0$ and $D_{(3)}=D$, is that $D_{i j k}$ is represented by (4.10)

PROPERTIES OF D-TENSOR IN ${ }^{3}$

Let $\mathrm{D}_{\mathrm{ijk}} \mathrm{m}^{\mathrm{k}}==_{\mathrm{ij}}$ andD $\mathrm{D}_{\mathrm{ijk}} \mathrm{n}^{\mathrm{k}}=* \mathrm{D}_{\mathrm{ij}}$, then from equation (4.3) similar to Shimada [7] and Rastogi [5], we can obtain
$' D_{i j}=D_{(1)} U_{i j}+D_{(3)} T_{i j}$
and

* $\mathrm{D}_{\mathrm{ij}}=\mathrm{D}_{(2)} \mathrm{n}_{\mathrm{i}} \mathrm{n}_{\mathrm{j}}-\mathrm{D}_{(1)} \mathrm{T}_{\mathrm{ij}}+\mathrm{D}_{(3)} \mathrm{m}_{\mathrm{i}} \mathrm{m}_{\mathrm{j}}$

Remark

If we take ' $\mathrm{D}_{\mathrm{ij}}=0$, equation (5.1) gives $\mathrm{D}_{(1)}=0, \mathrm{D}_{(3)}=0$ and $\mathrm{D}_{(2)}=\mathrm{D}$, while for $* D_{\mathrm{ij}}=0, D_{(1)}=0, \mathrm{D}_{(3)}=0$ and $\mathrm{D}_{(2)}$ $=0$.

From equations (5.1) and (5.2) we can observe that tensors ${ }^{\prime} \mathrm{D}_{\mathrm{ij}}$ and ${ }^{*} \mathrm{D}_{\mathrm{ij}}$ are symmetric in i and j and also satisfy $\mathrm{D}_{\mathrm{ij}} \mathrm{g}^{\mathrm{ij}}=0$ and $* \mathrm{D}_{\mathrm{ij}} \mathrm{g}^{\mathrm{ij}}=\mathrm{D}$. Hence we have:

Theorem

In a three- dimensional Finsler space F^{3}, the tensors ${ }^{\prime} \mathrm{D}_{\mathrm{ij}}$ and ${ }^{*} \mathrm{D}_{\mathrm{ij}}$ satisfy ${ }^{\prime} \mathrm{D}_{\mathrm{ij}} \mathrm{g}^{\mathrm{ij}}=0$ and $* \mathrm{D}_{\mathrm{ij}} \mathrm{g}^{\mathrm{ij}}=\mathrm{D}$.
Further from equations (5.1) and (5.2) we can obtain
$D_{i j} m^{j}=D_{(1)} m_{i}+D_{(3)} n_{i}, D_{i j} m^{j} m^{i}=D_{(1)}, D_{i j} m^{j} n^{i}=D_{(3)}$
$* D_{i j} m^{j}=D_{(3)} m_{i}-D_{(1)} n_{i}, * D_{i j} m^{j} m^{i}=D_{(3)}, * D_{i j} m^{j} n^{i}=-D_{(1)}$
Using equation (1.3), from equation (5.1) and (5.2) we can obtain
$' D_{i j / k}=\left\{\left(D_{(3) / k}+2 D_{(1)} h_{k}\right\} T_{i j}+\left\{D_{(1) / k}-2 D_{(3)} h_{k}\right\} V_{i j}\right.$
and

* $D_{i j / k}=\left(D_{(2) / k}-2 D_{(1)} h_{k}\right) n_{i} n_{j}+\left(D_{(3) / k}+2 D_{(1)} h_{k}\right) m_{i} m_{j}$
$-\left(D_{(1) / k}+D_{(2)} h_{k}-D_{(3)} h_{k}\right) T_{i j}$
From equations (5.5) and (5.6), we can obtain
$' D_{i j / k} l^{\mathrm{k}}=\left\{\left(\mathrm{D}_{(3) / 0}+2 \mathrm{D}_{(1)} \mathrm{h}_{0}\right\} \mathrm{T}_{\mathrm{ij}}+\left\{\mathrm{D}_{(1) / 0}-2 \mathrm{D}_{(3)} \mathrm{h}_{0}\right\} \mathrm{U}_{\mathrm{ij}}\right.$
8
$* D_{i j / k} l^{k}=\left(D_{(2) / 0}-2 D_{(1)} h_{0}\right) n_{i} n_{j}+\left(D_{(3) / 0}+2 D_{(1)} h_{0}\right) m_{i} m_{j}$
$-\left(D_{(1) / 0}+D_{(2)} h_{0}-D_{(3)} h_{0}\right) T_{i j}$
and
$\mathrm{D}_{\mathrm{i} j / \mathrm{k}} \mathrm{j}^{\mathrm{j}}=0, * \mathrm{D}_{\mathrm{i} j / \mathrm{k}} \mathrm{j}^{\mathrm{j}}=0$.
Hence we have:

Theorem

In a three -dimensional Finsler space F^{3}, h-covariant derivatives of tensors ${ }^{\mathrm{D}} \mathrm{ij}_{\mathrm{ij}}$ and ${ }^{*} \mathrm{D}_{\mathrm{ij}}$ satisfyequations (5.7), (5.8) and (5.9).

Using equation (1.4), from equation (5.1), we can obtain
$' D_{i j / k}=\left\{D_{(3) / / k}+2 \mathrm{v}_{\mathrm{k}} \mathrm{L}^{-1} \mathrm{D}_{(1)}\right\} \mathrm{T}_{\mathrm{ij}}+\left\{\mathrm{D}_{(1) / / \mathrm{k}}-2 \mathrm{v}_{\mathrm{k}} \mathrm{L}^{-1} \mathrm{D}_{(3)}\right\} \mathrm{U}_{\mathrm{ij}}$.
$-\mathrm{A}_{\mathrm{ij}} \mathrm{L}^{-1}\left(\mathrm{D}_{(3)} \mathrm{n}_{\mathrm{k}}+\mathrm{D}_{(1)} \mathrm{m}_{\mathrm{k}}\right)-\mathrm{B}_{\mathrm{ij}} \mathrm{L}^{-1}\left(\mathrm{D}_{(3)} \mathrm{m}_{\mathrm{k}}-\mathrm{D}_{(1)} \mathrm{n}_{\mathrm{k}}\right)$
and
$* D_{i j / k}=\left\{D_{(3) / / k}+2 L^{-1} D_{(1)} v_{k}\right\} m_{i} m_{j}+\left(D_{(2) / / k}-2 L^{-1} D_{(1)} v_{k}\right) n_{i} n_{j}$
$-\left\{D_{(1) / k}+L^{-1}\left(D_{(2)}-D_{(3)}\right) v_{k}\right\} T_{i j}+L^{-1}\left[\left(D_{(1)} m_{k}-D_{(2)} n_{k}\right) B_{i j}\right.$
$\left.-\left(\mathrm{D}_{(3)} \mathrm{m}_{\mathrm{k}}-\mathrm{D}_{(1)} \mathrm{n}_{\mathrm{k}}\right) \mathrm{A}_{\mathrm{ij}}\right]$
From equations (5.10) and (5.11), we can obtain
$'^{\prime} \mathrm{D}_{\mathrm{ij} / \mathrm{k}} \mathrm{l}^{\mathrm{j}}=-\mathrm{L}^{-1}\left[\mathrm{D}_{(3)} \mathrm{T}_{\mathrm{ij}}+\mathrm{D}_{(1)} \mathrm{U}_{\mathrm{ij}}\right]$
$' \mathrm{D}_{\mathrm{ij} / / 0}=\mathrm{D}_{(3) / / 0} \mathrm{~T}_{\mathrm{ij}}+\mathrm{D}_{(1) / / 0} \mathrm{U}_{\mathrm{ij}}$
and
$* D_{i \mathrm{i} / \mathrm{k}} \mathrm{j}^{\mathrm{j}}=\mathrm{L}^{-1}\left[\mathrm{D}_{(1)} \mathrm{T}_{\mathrm{ij}}-\mathrm{D}_{(2)} \mathrm{n}_{\mathrm{i}} \mathrm{n}_{\mathrm{k}}-\mathrm{D}_{(3)} \mathrm{m}_{\mathrm{i}} \mathrm{m}_{\mathrm{k}}\right]$

* $\mathrm{D}_{\mathrm{ij} / 0}=\mathrm{D}_{(2) / / 0} \mathrm{n}_{\mathrm{i}} \mathrm{n}_{\mathrm{j}}-\mathrm{D}_{(1) / / 0} \mathrm{~T}_{\mathrm{ij}}+\mathrm{D}_{(3) / / 0} \mathrm{~m}_{\mathrm{i}} \mathrm{m}_{\mathrm{j}}$

From equations (5.1) and (5.12), we can obtain
$\mathrm{D}_{\mathrm{ij} / \mathrm{k}} \mathrm{k}^{\mathrm{j}}+\mathrm{L}^{-1} \mathrm{D}_{\mathrm{ik}}=0$
Hence we have:
9

Theorem

In a three- dimensional Finsler space F^{3}, the tensor ' $D_{i k}$ satisfies equation (5.16).
Similarly from equations (5.2) and (5.14), we can obtain

* $\mathrm{D}_{\mathrm{ij} / \mathrm{k}} \mathrm{k}^{\mathrm{j}}+\mathrm{L}^{-1{ }^{1 *} \mathrm{D}_{\mathrm{ik}}=0}$

Hence we have:

Theorem

In a three - dimensional Finsler space F^{3}, the tensor ${ }^{\text {'* }} \mathrm{D}_{\mathrm{ik}}$ satisfies equation (5.17).

D-REDUCIBLE FINSLER SPACES

Following calculations similar to the one used by Matsumoto [2], in analogy to the definition of C-reducible Finsler space, we here define D-reducible Finsler space.

Definition

A Finsler space F^{3}, shall be called D-reducible Finsler space if the tensor $D_{i j \mathrm{k}}$ is defined as
$\mathrm{D}_{\mathrm{ijk}}=(1 / 4) \sum_{(\mathrm{ijk})}\left\{\mathrm{h}_{\mathrm{ij}} \mathrm{D}_{\mathrm{k}}\right\}$
Example. Let us consider a Finsler space F^{3}, in which $D_{(1)}=0, D_{(2)}=(3 / 4) D$ and $D_{(3)}=(1 / 4) D$, then the tensor $D_{i j k}$ is expressible as

$$
\begin{equation*}
\mathrm{D}_{\mathrm{ijk}}=\mathrm{D}\left[(3 / 4) \mathrm{n}_{\mathrm{i}} \mathrm{n}_{\mathrm{j}} \mathrm{n}_{\mathrm{k}}+(1 / 4) \Sigma_{(\mathrm{ijk})}\left\{\mathrm{m}_{\mathrm{i}} \mathrm{~m}_{\mathrm{j}} \mathrm{n}_{\mathrm{k}}\right\}\right] \tag{6.2}
\end{equation*}
$$

Equation (6.2) is nothing but equation (6.1) written in alternative form.
From equation (6.2), we can obtain by virtue of equation (3.1)
$'_{i j}=(1 / 4) \mathrm{D}_{\mathrm{ij}}$

* $\mathrm{D}_{\mathrm{ij}}=(1 / 4) \mathrm{D}\left(\mathrm{h}_{\mathrm{ij}}+2 \mathrm{n}_{\mathrm{i}} \mathrm{n}_{\mathrm{j}}\right)$

Using equations (1.3) and (4.3) we can obtain on simplification
$D_{i j k / r}=\left\{D_{(1) / r}-3 D_{(3)} h_{r}\right\} m_{i} m_{j} m_{k}+\left(D_{(2) / r}-3 D_{(1)} h_{r}\right) n_{i} n_{j} n_{k}$
$+\Sigma_{(\mathrm{ijk} k}\left[\left\{\left(\mathrm{D}_{(3) / \mathrm{r}}+3 \mathrm{D}_{(1)} \mathrm{h}_{\mathrm{r}}\right\} \mathrm{m}_{\mathrm{i}} \mathrm{m}_{\mathrm{j}} \mathrm{n}_{\mathrm{k}}-\left\{\left(\mathrm{D}_{(1) / \mathrm{r}}+\mathrm{D}_{(2)} \mathrm{h}_{\mathrm{r}}-2 \mathrm{D}_{(3)} \mathrm{h}_{\mathrm{r}}\right)\right\} \mathrm{m}_{\mathrm{i}} \mathrm{n}_{\mathrm{j}} \mathrm{n}_{\mathrm{k}}\right]\right.$
If we define $\mathrm{Q}_{\mathrm{ijk}}=\mathrm{D}_{\mathrm{ijk} / 0}$, from equation (6.5), we get
$\mathrm{Q}_{\mathrm{ijk}}=\left\{\mathrm{D}_{(1) / 0}-3 \mathrm{D}_{(3)} \mathrm{h}_{0}\right\} \mathrm{m}_{\mathrm{i}} \mathrm{m}_{\mathrm{j}} \mathrm{m}_{\mathrm{k}}+\left(\mathrm{D}_{(2) / 0}-3 \mathrm{D}_{(1)} \mathrm{h}_{0}\right) \mathrm{n}_{\mathrm{i}} \mathrm{n}_{\mathrm{j}} \mathrm{n}_{\mathrm{k}}$
10
$\left.+\sum_{(\mathrm{jjk})}\left[\left\{\mathrm{D}_{(3) \mid 0}+3 \mathrm{D}_{(1)} \mathrm{h}_{0}\right\} \mathrm{m}_{\mathrm{i}} \mathrm{m}_{\mathrm{j}} \mathrm{n}_{\mathrm{k}}-\left\{\mathrm{D}_{(1) \mid 0^{+}}+\left(\mathrm{D}_{(2)^{-}}-2 \mathrm{D}_{(3)}\right) \mathrm{h}_{0}\right)\right\} \mathrm{m}_{\mathrm{i}} \mathrm{n}_{\mathrm{j}} \mathrm{n}_{\mathrm{k}}\right]$
If we assume that the tensor $Q_{i j k}$ is proportional to $D_{i j k}$, i.e., $Q_{i j k}=\lambda D_{i j k}$, where λ is a scalar and is coefficient of proportionality, from equations (4.3) and (6.6), by comparing coefficients, we can obtain

- $\mathrm{D}_{(1) / 0}-3 \mathrm{D}_{(3)} \mathrm{h}_{0}=\lambda \mathrm{D}_{(1)}$, (ii) $\mathrm{D}_{(2) / 0}-3 \mathrm{D}_{(1)} \mathrm{h}_{0}=\lambda \mathrm{D}_{(2)}$,
- $D_{(3) / 0}+3 \mathrm{D}_{(1)} \mathrm{h}_{0}=\lambda \mathrm{D}_{(3)}$, (iv) $\mathrm{D}_{(1) / 0}+\mathrm{D}_{(2)} \mathrm{h}_{0}-2 \mathrm{D}_{(3)} \mathrm{h}_{0}=\lambda \mathrm{D}_{(1)}$

From (i) and (iv), we can obtain $\left(\mathrm{D}_{(2)}+\mathrm{D}_{(3)}\right) \mathrm{h}_{0}=0$ and from (ii) and (iii), we get
$D_{(2) / 0}+D_{(3) / 0}=\lambda\left(D_{(2)}+D_{(3)}\right)$. Since $h_{0} \neq 0$, it implies $D_{(2)}+D_{(3)}=0$, i.e., $D=0$,
which will imply $D_{i}=0$ and $D_{i \mathrm{ijk}}=0$. Hence we have:

Theorem

In a three - dimensional Finsler space, if we assume that $\mathrm{Q}_{\mathrm{ijk}}=\lambda \mathrm{D}_{\mathrm{ijk}}$,
then both $\mathrm{Q}_{\mathrm{ijk}}$ and $\mathrm{D}_{\mathrm{ijk}}$ vanish.
From equation (6.6) by virtue of $\mathrm{Q}_{\mathrm{ijk}} \mathrm{g}^{\mathrm{jk}}=\mathrm{Q}_{\mathrm{i}}$, we can obtain $\mathrm{Q}_{\mathrm{i}}=\mathrm{D}{ }_{10} \mathrm{n}_{\mathrm{i}}-$
$D h_{0} m_{i}$. For a D-reducible Finsler space F^{3}, by virtue of (6.2), the tensor $\mathrm{Q}_{\mathrm{ijk}}$ can
be expressed as
$\mathrm{Q}_{\mathrm{ijk}}=-(1 / 4) \mathrm{D} \mathrm{h}_{0} \sum_{(\mathrm{ijk})}\left\{\mathrm{h}_{\mathrm{ij}} \mathrm{m}_{\mathrm{k}}\right\}$
From the definition of C-reducible Finsler space F^{3} and equation (6.7), we can obtain
$\mathrm{C} \mathrm{Q}_{\mathrm{ijk}}+\mathrm{D} \mathrm{h}_{0} \mathrm{C}_{\mathrm{ijk}}=0$. Hence we have:

Theorem

In a C-reducible Finsler space F^{3}, torsion tensor $C_{i j k}$, and in a D-reducible Finsler space F^{3} torsion tensor $Q_{i j k}$
satisfy $\mathrm{C}_{\mathrm{ijk}}+\mathrm{Dh}_{0} \mathrm{C}_{\mathrm{ijk}}=0$.
Similar to the definition of P-reducibility, we can give following:

Definition

A Finsler space F^{3}, shall be called Q-reducible if the Q-tensor is given by
$\mathrm{Q}_{\mathrm{ijk}}=(1 / 4) \sum_{(\mathrm{ijk})}\left\{\mathrm{h}_{\mathrm{ij}} \mathrm{Q}_{\mathrm{k}}\right\}$
Equation (6.8) can alternatively be expressed as
$\mathrm{Q}_{\mathrm{ijk}}=\left(\mathrm{D}_{/ 0} / 4\right)\left(\mathrm{h}_{\mathrm{ij}} \mathrm{n}_{\mathrm{k}}+\mathrm{h}_{\mathrm{jk}} \mathrm{n}_{\mathrm{i}}+\mathrm{h}_{\mathrm{ki}} \mathrm{n}_{\mathrm{j}}\right)-\left(\mathrm{Dh}_{0} / 4\right)\left(\mathrm{h}_{\mathrm{ij}} \mathrm{m}_{\mathrm{k}}+\mathrm{h}_{\mathrm{jk}} \mathrm{m}_{\mathrm{i}}+\mathrm{h}_{\mathrm{ki}} \mathrm{m}_{\mathrm{j}}\right)$
11
If a Q-reducible space is both C-reducible and D-reducible, from equation (6.9), we can obtain $\mathrm{CDQ}_{\mathrm{ijk}}=-\mathrm{D}^{2} \mathrm{~h}_{0} \mathrm{C}_{\mathrm{ijk}}$ $+\mathrm{D}_{/ 0} \mathrm{C} \mathrm{D}_{\mathrm{ij} \mathrm{k}}$. Hence we have:

Theorem

A three - dimensional Q-reducible Finsler space F^{3}, which is both D-reducible and C-reducible satisfies $\mathrm{CDQ}_{\mathrm{ijk}}=-$ $\mathrm{D}^{2} \mathrm{~h}_{0} \mathrm{C}_{\mathrm{ijk}}+\mathrm{D}_{/ 0} \mathrm{CD}_{\mathrm{ijk}}$.

TENSOR $\mathrm{D}^{\mathbf{1} \mathrm{j} k \mathrm{k}}$.

In analogy to the definition of v-curvature tensor $\mathrm{S}_{\mathrm{ijkh}}$ based on torsion tensor C_{ij}, we define here the tensor $D_{i j k h}^{\prime}$ based on $D_{i j k}$ as follows:
$D_{i j k h}^{\prime}=D_{i h r} D_{j k}^{r}-D_{i k r} D_{j h}^{r}$
Substituting the value of $\mathrm{D}_{\mathrm{ijk}}$ from equation (2.2) in (7.1), we obtain on simplification
$D_{i j k h}^{\prime}=\left(2 D_{(1)}{ }^{2}-D_{(2)} D_{(3)}+D_{(3)}{ }^{2}\right)\left(m_{k} n_{h}-m_{h} n_{k}\right)\left(m_{i} n_{j}-m_{j} n_{i}\right)$
We know that in F^{3}, the tensor $h_{i k} h_{j h}-h_{i h} h_{j k}=\left(m_{i} n_{j}-m_{j} n_{i}\right)\left(m_{k} n_{h}-m_{h} n_{k}\right)$, therefore equation (7.2) can also be expressed as

$$
\begin{equation*}
D_{\mathrm{ijkh}}^{\prime}=\left(2 \mathrm{D}_{(1)}{ }^{2}-\mathrm{D}_{(2)} \mathrm{D}_{(3)}+\mathrm{D}_{(3)}{ }^{2}\right)\left(\mathrm{h}_{\mathrm{ik}} \mathrm{~h}_{\mathrm{jh}}-\mathrm{h}_{\mathrm{ihh}} \mathrm{~h}_{\mathrm{jk}}\right) \tag{7.3}
\end{equation*}
$$

Following proposition (29.2) of Matsumoto [2], we can obtain
$D_{i j k h}^{\prime}=D^{*}\left(h_{i k} h_{j h}-h_{i h} h_{j k}\right)$
where D^{*} is a (0)p-homogeneous scalar satisfying
$D^{*}=\left(2 D_{(1)}{ }^{2}-D_{(2)} D_{(3)}+D_{(3)}{ }^{2}\right)$
Hence we have:

Theorem

In a three- dimensional Finsler space F^{3}, there exists a tensor $\mathrm{D}_{\mathrm{ijkh}}^{\prime}$ given by (7.2) such that its scalar D^{*} is given by (7.5).

From equation (7.2), we can observe that $\mathrm{D}_{\mathrm{ijkh}}^{\prime}=0$ implies either $\mathrm{h}_{\mathrm{ij}}=0$, i.e., F^{3} is a Riemannian space or $\left(2 \mathrm{D}_{(1)}{ }^{2}\right.$ $\left.D_{(2)} D_{(3)}+D_{(3)}{ }^{2}\right)=0$. Hence we have:

Theorem

In a three- dimensional non-Riemannian Finsler space F^{3}, the necessary and sufficient condition for the tensor $\mathrm{D}_{\mathrm{ijkh}}^{\prime}$ to vanish is given by $\mathrm{D}^{*}=0$.

From $D_{i j k h}^{\prime} g^{j h}=D_{i k}^{\prime}$ and $D_{i k}^{\prime} g^{i k}=D^{\prime}$, we can obtain from equation (7.3)
$D_{i j}^{\prime}=D^{*} h_{i \mathrm{ij}}, \mathrm{D}^{\prime}=2 \mathrm{D}^{*}$. Hence we have:
12

Theorem

In a three- dimensional non-Riemannian Finsler space D'-Ricci tensorand
D^{\prime}-scalar satisfyD ${ }_{\mathrm{ij}}^{\prime}=\mathrm{D}^{*} \mathrm{~h}_{\mathrm{ij}}, \mathrm{D}^{\prime}=2 \mathrm{D}^{*}$.
In a D-reducible Finsler space equation (7.2) is given by
$D^{\prime}{ }_{\mathrm{ijkh}}=-(1 / 8) D^{2}\left(h_{\mathrm{ik}} h_{\mathrm{jh}}-h_{\mathrm{ih}} h_{\mathrm{jk}}\right)$
which implies $\mathrm{D}_{\mathrm{ij}}^{\prime}=-(1 / 8) \mathrm{D}^{2} \mathrm{~h}_{\mathrm{ij}}$ and $\mathrm{D}^{\prime}=-(1 / 4) \mathrm{D}^{2}$.

TENSOR $\mathbf{Q}_{\mathrm{ijkh}}$

Corresponding to tensor $\mathrm{Q}_{\mathrm{ijk}}$, we define tensor $\mathrm{Q}_{\mathrm{ijkh}}$ as follows:
$\mathrm{Q}_{\mathrm{ijkh}}=\mathrm{Q}_{\mathrm{ihr}} \mathrm{Q}_{\mathrm{jk}}^{\mathrm{r}}-\mathrm{Q}_{\mathrm{ikr}} \mathrm{Q}_{\mathrm{jh}}^{\mathrm{r}}$
Substituting value of $\mathrm{Q}_{\mathrm{ihr}}$ etc. from equation (4.3) in (8.1) and solving we get
$\mathrm{Q}_{\mathrm{ijkh}}=\left(\mathrm{A}_{3}{ }^{2}+\mathrm{A}_{4}{ }^{2}+\mathrm{A}_{1} \mathrm{~A}_{4}-\mathrm{A}_{2} \mathrm{~A}_{3}\right)\left(\mathrm{m}_{\mathrm{j}} \mathrm{n}_{\mathrm{i}}-\mathrm{m}_{\mathrm{i}} \mathrm{n}_{\mathrm{j}}\right)\left(\mathrm{m}_{\mathrm{h}} \mathrm{n}_{\mathrm{k}}-\mathrm{m}_{\mathrm{k}} \mathrm{n}_{\mathrm{h}}\right)$,
where
$\mathrm{A}_{1}=\mathrm{D}_{(1) / 0}-3 \mathrm{D}_{(3)} \mathrm{h}_{0}, \mathrm{~A}_{2}=\mathrm{D}_{(2) / 0^{-}}-3 \mathrm{D}_{(1)} \mathrm{h}_{0}$
$\mathrm{A}_{3}=\mathrm{D}_{(3) / 0}+3 \mathrm{D}_{(1)} \mathrm{h}_{0}, \mathrm{~A}_{4}=\mathrm{D}_{(1) / 0}+\left(\mathrm{D}_{(2)}-2 \mathrm{D}_{(3)}\right) \mathrm{h}_{0}$
From equation (8.3), we can observe that
$\mathrm{A}_{4}-\mathrm{A}_{1}=\left(\mathrm{D}_{(1)}+\mathrm{D}_{(3)}\right) \mathrm{h}_{0}, \mathrm{~A}_{2}+\mathrm{A}_{3}=\mathrm{D}_{(2) / 0}+\mathrm{D}_{(3) / 0}$
Hence we have:

Theorem

In a three- dimensional Finsler space F^{3}, tensor $\mathrm{Q}_{\mathrm{ijkh}}$ is given by(8.2), such that its coefficients satisfy (8.4).
Comparing equations (7.2) and (8.2), we can obtain
$\mathrm{Q}_{\mathrm{ijkh}}=\left(\mathrm{A}_{3}{ }^{2}+\mathrm{A}_{4}{ }^{2}+\mathrm{A}_{1} \mathrm{~A}_{4}-\mathrm{A}_{2} \mathrm{~A}_{3}\right)\left(2 \mathrm{D}_{(1)}{ }^{2}-\mathrm{D}_{(2)} \mathrm{D}_{(3)}+\mathrm{D}_{(3)}{ }^{2}\right)^{-1} \mathrm{D}_{\mathrm{ijkh}}$

Hence we can obtain

Theorem

In a three -dimensional Finsler space F^{3}, the tensors $\mathrm{Q}_{\mathrm{ijkh}}$ and $\mathrm{D}_{\mathrm{ijkh}}$ are proportional to each other.
For a D-reducible Finsler space, $A_{1}=-(3 / 4) D h_{0}, A_{2}=0, A_{3}=0, A_{4}=(1 / 4) D_{0}$, therefore equation (8.2) gives 13
$Q_{i j k h}=-(1 / 8) D^{2} h_{0}{ }^{2}\left(m_{j} n_{i}-m_{i} n_{j}\right)\left(m_{h} n_{k}-m_{k} n_{h}\right)$
which implies $Q_{i \mathrm{ijkh}} g^{\mathrm{jh}}=\mathrm{Q}_{\mathrm{ik}}=-(1 / 8) D^{2} h_{0}{ }^{2} h_{\mathrm{ik}}$ and $\mathrm{Q}_{\mathrm{ik}} \mathrm{g}^{\mathrm{ik}}=-(1 / 4) D^{2} h_{0}{ }^{2}$.
Hence we have:

Theorem

In a three -dimensional D-reducible Finsler space F^{3}, tensor $\mathrm{Q}_{\mathrm{ijkh}}$ is expressed by equation (8.6).
For a Q-reducible Finsler space $F^{3}, A_{1}=-(3 / 4) D h_{0}, A_{2}=(3 / 4) D_{/ 0}, A_{3}=(1 / 4) D_{/ 0}$ and $A_{4}=(1 / 4) D h_{0}$, therefore equation (8.2) can be expressed as
$\mathrm{Q}_{\mathrm{ijkh}}=-(1 / 8)\left(\mathrm{D}_{/ 0}{ }^{2}+\mathrm{D}^{2} \mathrm{~h}_{0}{ }^{2}\right)\left(\mathrm{m}_{\mathrm{j}} \mathrm{n}_{\mathrm{i}}-\mathrm{m}_{\mathrm{i}} \mathrm{n}_{\mathrm{j}}\right)\left(\mathrm{m}_{\mathrm{h}} \mathrm{n}_{\mathrm{k}}-\mathrm{m}_{\mathrm{k}} \mathrm{n}_{\mathrm{h}}\right)(8.7)$
Hence we have:

Theorem

In a three- dimensional Q-reducible Finsler space F^{3}, tensor $\mathrm{Q}_{\mathrm{ijkh}}$ is expressed by equation (8.7).

REFERENCES

1. Cartan, E.: Les espaces de Finsler, Actualites 79, Paris, 1934.
2. Matsumoto, M.: On C-reducible Finsler space, Tensor, N.S., 24(1972), 29-37.
3. Matsumoto, M.: Foundations of Finsler Geometry and special Finsler spaces, Kaiseisha Press, Otsu, 520, Japan, 1986.
4. Rastogi, S.C.: On some new tensors and their properties in a Finsler space, J.T.S.I.., 8, 9, 10(1990-92), 12-21.
5. Rastogi, S.C.: T3-like Finsler spaces, J.T.S., 2(2008), 49-65.
6. Rund, H.:The Differential geometry of Finsler s[paces, Springer-Verlag, Berlin, 1959.
7. Shimada, H.: on the Ricci tensors of particular Finsler spaces, J. Korean Math. Soc., 14, 1(1977), 41-63.
