

ON SOME NEW TENSORS AND THEIR PROPERTIES IN A FINSLER SPACE-I

S. C. Rastogi

Retired Director & Professor, Department of Mathematics, Seth Vishambhar Nath Institute of Engineering, Research and Teaching (SVNIERT), Barabanki, Uttar Pradesh, India

Received: 26 Mar 2019

Accepted: 04 Apr 2019

Published: 30 Apr 2019

ABSTRACT

In (1990), Certain new tensors in a Finsler space were introduced and studied by the author [4]. The purpose of the present paper is to define and study some new and very useful symmetric and skew-symmetric tensors of second and third order in a Finsler space of three dimensions. In the present paper, while studying three dimensional Finsler spaces the author has defined a new symmetric tensor D_{ijk} , which satisfies $D_{ijk} l^i = 0$ and $D_{ijk}g^{ik} = D_i = D n_i$. Besides defining this tensor and following the definition of C-reducible Finsler spaces Matsumoto [2] the author has further defined and studied D-reducible Finsler spaces. A symmetric tensor Q_{ijk} based on D_{ijk} and similar to P_{ijk} is also introduced and its relationship with other known tensors is studied. Several tensors corresponding to curvature tensor S_{ijkh} are also studied in F^3 .

KEYWORDS: Three-Dimensional Finsler Space, D-Tensor, Q-Tensor

INTRODUCTION

Let F^3 be a three- dimensional Finsler space with the Moor's frame (l_i , m_i , n_i). Corresponding to this frame, the metric tensor and (h) hv-torsion tensors are given by Matsumoto [3] and Rund [6]

$$g_{ij} = l_i l_j + m_i m_j + n_j n_j \tag{1.1}$$

And

$$C_{ijk} = C_{(1)} m_i m_j m_k + C_{(2)} n_i n_j n_k + \Sigma_{(ijk)} \{ C_{(3)} m_i n_j n_k - C_{(2)} m_i m_j n_k \}$$
(1.2)

In equation (1.2), $\Sigma_{(ijk)}$ {}, represents cyclic permutation of indices i, j, k and summation. In a three- dimensional Finsler space h and v-covariant derivatives of a tensor are respectively given in Matsumoto [3]

$$\mathbf{K}_{m'r}^{h} = \partial_{r}\mathbf{K}_{m}^{h} - \mathbf{N}_{r}^{j}\Delta_{j}\mathbf{K}_{m}^{h} + \mathbf{K}_{m}^{k}\mathbf{F}_{k}^{h} - \mathbf{K}_{k}^{h}\mathbf{F}_{m}^{k}\mathbf{r}$$
(1.3)

And

$$K^{h}_{m/r} = \Delta_{r} K^{h}_{m} + K^{j}_{m} C^{h}_{j} - K^{h}_{j} C^{j}_{mr}$$
(1.4)

where $\partial_r = \partial/\partial x^r$ and $\Delta_r = \partial/\partial y^r$.

From equations (1.3) and (1.4), we can easily obtain [3] 2

$$l'_{j} = 0, m'_{j} = n'h_{j}, n'_{j} = -m'h_{j}, (1.5)$$

and

S. C. Rastogi

$$L l_{j/j}^{i} = h_{j}^{i}, L m_{j/j}^{i} = -l^{i} m_{j} + n^{i} v_{j}, L n_{j/j}^{i} = -l^{i} n_{j} - m^{i} v_{j}$$
(1.6)

where $v_j = v_{2)3\gamma} \, e_{\gamma)j}$ and $h_j = H_{2)3 \, \gamma} e_{\gamma)j}.$

The second and third curvature tensors in the sense of E. Cartan [1] are given by

$\mathbf{P}_{ijkh} = \varsigma_{(i,j)} \left\{ \mathbf{A}_{jkh/i} + \mathbf{A}_{ikr} \mathbf{P}^{r}_{jh} \right\}$	(1.7)
$S_{ijkh} = \varsigma_{(h,k)} \{ A_{ihr} A^r_{\ jk} \}$	(1.8)
Such that	

 $\zeta_{(h,k)}\{P_{ijkh}\} = -S_{ijkh/0}$ (1.9)

where $\varsigma_{(h,k)}$ } means interchange of h and k and subtraction.

SOME NEW TENSORS OF SECOND ORDER

Definition

In a Finsler space of three dimensions F^3 , we define non-zero second order symmetric tensors $A_{ij}(x,y)$ and $B_{ij}(x,y)$ given by

$$A_{ij}(x,y) = \sum_{(ij)} \{l_i m_j\}, B_{ij}(x,y) = \sum_{(ij)} \{l_i n_j\}$$
(2.1)

which satisfy

$$A_{ij'k} = h_k B_{ij}, B_{ij'k} = -h_k A_{ij},$$
(2.2)

$$A_{ij/k} = L^{-1} \{ h_{ik}m_j + h_{jk} m_i - 2 l_i l_j m_k + v_k B_{ij} \}$$
(2.3)

and

$$B_{ij/k} = L^{-1} \{ h_{ik} n_j + h_{jk} n_i - 2l_i l_j n_k - v_k A_{ij} \}$$
(2.4)

From these equations we can obtain

Theorem

In a three- dimensional Finsler space F³, tensors A_{ij} and B_{ij} satisfy

$$A_{ij/k} l^{i} + L^{-1} (2 l_{j} m_{k} - n_{j} v_{k}) = 0, B_{ij/k} l^{i} + L^{-1} (2 l_{j} n_{k} - m_{j} v_{k}) = 0,$$
(2.5)

$$\sum_{(ijk)} \{ A_{ij/k} - h_k B_{ij} \} = 0, \sum_{(ijk)} \{ B_{ij/k} + h_k A_{ij} \} = 0$$
(2.6)

$$\sum_{(ijk)} \{ A_{ij/k} - L^{-1}(2h_{ij}m_k - 2l_il_jm_k + v_kB_{ij}) \} = 0$$
(2.7)

and

$$\sum_{(ijk)} \{ \mathbf{B}_{ij/k} - \mathbf{L}^{-1} (2 \ \mathbf{h}_{ij} \mathbf{n}_k + 2\mathbf{l}_i \mathbf{l}_j \mathbf{n}_{k^-} \mathbf{v}_k \mathbf{A}_{ij}) \} = 0$$
(2.8)

Definition

In a Finsler space of three dimensions F^3 , we define non-zero second order symmetric tensors $T_{ij}(x,y)$ and $U_{ij}(x,y)$ given by

 $T_{ij} = \sum_{(ij)} \{m_i n_j\}, U_{ij} = m_i m_j - n_i n_j$ (2.9)

11

These tensors satisfy

 $T_{ij/k} = -2 h_k U_{ij}, U_{ij/k} = 2 h_k T_{ij},$ (2.10)

$$T_{ij/k} = -L^{-1} \{ l_i T_{jk} + l_j T_{ki} + 2 v_k U_{ij} \}$$
(2.11)

and

$$U_{ij/k} = -L^{-1}(l_i U_{jk} + l_j U_{ki} - 2 v_k T_{ij})$$
(2.12)

which lead to

Theorem

In a three- dimensional Finsler space F^3 , tensors T_{ij} and U_{ij} satisfy

$$T_{ij/k} I^{i} = -L^{-1}T_{jk}, U_{ij/k} I^{i} = -L^{-1}U_{jk}, T_{ij/0} = 0, U_{ij/0} = 0,$$
(2.13)

$$\sum_{(ijk)} \{ T_{ij'k} + 2 U_{ij}h_k \} = 0, \sum_{(ijk)} \{ U_{ij'k} - 2 h_k T_{ij} \} = 0,$$
(2.14)

$$\sum_{(ijk)} \{ T_{ij/k} + 2 L^{-1} (l_i T_{jk} + v_i U_{jk}) \} = 0,$$
(2.15)

$$\sum_{(ijk)} \{ U_{ij/k} + 2L^{-1}(l_iU_{jk} - v_iT_{jk}) \} = 0.$$
(2.16)

Definition

In a Finsler space of three dimensions F^3 , we define non-zero second order skew-symmetric tensors $E_{ij}(x,y)$, $F_{ij}(x,y)$ and $V_{ij}(x,y)$, given by

$$E_{ij} = \zeta_{(ij)} \{ l_i m_j \}, F_{ij} = \zeta_{(ij)} \{ l_i n_j \}, V_{ij} = \zeta_{(ij)} \{ m_i n_j \}$$
(2.17)

These tensors satisfy

$$E_{ij/k} = h_k F_{ij}, F_{ij/k} = -h_k E_{ij}, V_{ij/k} = 0$$
(2.18)

$$E_{ij/k} = L^{-1}(v_k F_{ij} - n_k V_{ij}), F_{ij/k} = L^{-1}(m_k V_{ij} - v_k E_{ij})$$
(2.19)

$$V_{ij/k} = L^{-1}(l_i V_{jk} + l_j V_{ki})$$
(2.20)

From equation (2.18), (2.19) and (2.20) we can obtain

Theorem

4

In a three -dimensional Finsler space F^3 , Tensors E_{ij} , F_{ij} and V_{ij} satisfy

$$E_{ij/k} l^{i} = L^{-1} v_{k} n_{j}, F_{ij/k} l^{i} = -L^{-1} v_{k} m_{j}, V_{ij/k} l^{i} = L^{-1} V_{jk} \text{ and}$$

$$\sum_{(ijk)} \{E_{ij/k} - h_{k} F_{ij}\} = 0, \sum_{(ijk)} \{F_{ij k} + h_{k} E_{ij}\} = 0, \qquad (2.21)$$

$$\sum_{(ijk)} \{ E_{ij/k^{-}} L^{-1} v_k F_{ij} \} = 0, \sum_{(ijk)} \{ F_{ij/k} + L^{-1} v_k E_{ij} \} = 0$$
(2.22)

$$\sum_{(ijk)} \{ V_{ij/k} - 2L^{-1}l_iV_{jk} \} = 0.$$
(2.23)

From equations (2.1), (2.8) and (2.17), we can easily establish

Theorem

In a three dimensional Finsler space F^3 , tensors A_{ij} , B_{ij} , T_{ij} , U_{ij} , $E_{ij}F_{ij}$ and V_{ij} satisfy $\zeta_{(jk)}$ { $A_{hj}A_{ik}$ } = $E_{kj}E_{hi}$, $\zeta_{(jk)}$ { $B_{hj}B_{ik}$ } = $F_{kj}F_{hi}$. $\zeta_{(jk)}$ { $T_{hj}T_{ik}$ } = $V_{hi}V_{kj}$ = $\zeta_{(jk)}$ { $U_{hj}U_{ik}$ } = $\zeta_{(jk)}$ { $h_{hj}h_{ik}$ }.

SOME NEW TENSORS OF THIRD ORDER

Definition

In a Finsler space of three- dimensions F^3 , we define $\Delta_k A_{ij} = A_{ij,k}$, $\Delta_k B_{ij} = B_{ij,k}$, $\Delta_k T_{ij} = T_{ij,k}$ and $\Delta_k U_{ij} = U_{ij,k}$ such that

 $A_{ij,k} = A_{ij/k} + m_r \sum_{(ij)} \{ l_j C^r_{ik} \}$ (3.1)

$$\mathbf{B}_{ij,k} = \mathbf{B}_{ij/k} + n_r \sum_{(ij)} \{ l_j \mathbf{C}^r_{ik} \}$$
(3.2)

$$T_{ij,k} = T_{ij/k} + m_r \sum_{(ij)} \{ n_j C^r_{ik} \} + n_r \sum_{(ij)} \{ m_j C^r_{ik} \}$$
(3.3)

$$U_{ij,k} = U_{ij/k} + m_r \sum_{(ij)} \{ m_j C^r_{ik} \} - n_r \sum_{(ij)} \{ n_j C^r_{ik} \}$$
(3.4)

These equations can be further solved with the help of

$$m_{\rm r}C^{\rm r}_{\rm ik} = C_{(1)} m_{\rm i}m_{\rm k} - C_{(2)}T_{\rm ik} + C_{(3)}n_{\rm i}n_{\rm k}$$
(3.5)

$$n_{r}C_{ik}^{r} = -C_{(2)}m_{i}m_{k} + C_{(3)}T_{ik} + C_{(2)}n_{i}n_{k}$$
(3.6)

From above equations we can obtain

Theorem

In a Finsler space of three - dimensions F^3 , $A_{ij,0} = 0$, $B_{ij,0} = 0$, $T_{ij,0} = 0$, $U_{ij,0} = 0$.

Definition

In a Finsler space of three - dimensions F^3 , we define $\Delta_k E_{ij} = E_{ij,k}$,

$$\Delta_k F_{ij} = F_{ij,k}$$
 and $\Delta_k V_{ij} = V_{ij,k}$ such that 5

$$E_{ij,k} = E_{ij/k} - m_r \zeta_{(ij)} \{ l_j C^r_{ik} \}$$
(3.7)

$$F_{ij,k} = F_{ij/k} - n_r \zeta_{(ij)} \{ l_j C^r_{ik} \}$$
(3.8)

$$V_{ii,k} = V_{ii/k} + m_r \zeta_{(ii)} \{ n_i C^r_{ik} \} - n_r \zeta_{(ii)} \{ m_i C^r_{ik} \}$$
(3.9)

From above equations we can obtain

Theorem

In a Finsler space of three- dimensions F^3 , $E_{ij,0} = 0$, $F_{ij,0} = 0$ and $V_{ij,0} = 0$.

THIRD ORDER SYMMETRIC TENSOR

 D_{ijk} . Let D_{ijk} be a symmetric tensor in a Finsler space F^3 satisfying $D_{ijk} l^i = 0$, $D_{ijk}g^{jk} = D_i = D n_i$. Any tensor of the above type in F^3 can be expressed as

me New Tensors and Their Properties in a Finsler Space-I	13
$D_{ijk} = D_{(1)} m_i m_j m_k + D_{(2)} n_i n_j n_k + \Sigma_{(ijk)} \{ D_{(3)} m_i m_j n_k + D_{(4)} m_i n_j n_k \}$	(4.1
where $D_{(1)}$, $D_{(2)}$, $D_{(3)}$ and $D_{(4)}$ are scalars to be determined.	
Multiplying equation (4.1) by g^{jk} , we obtain on simplification	
$D n_i = (D_{(1)} + D_{(4)}) m_i + (D_{(2)} + D_{(3)}) n_i,$	
which easily leads to	
$D_{(2)} + D_{(3)} = D, D_{(1)} + D_{(4)} = 0.$	(4.2
Thus equation (4.1) can also be expressed as	
$D_{ijk} = D_{(1)} m_i m_j m_k + D_{(2)} n_i n_j n_k + \Sigma_{(ijk)} \{ D_{(3)} m_i m_j n_k - D_{(1)} m_i n_j n_k \},$	(4.2
which leads to the following :	

Definition

In a three -dimensional Finsler space F^3 , the symmetric tensor D_{ijk} satisfying $D_{ijk} l^i = 0$, $D_{ijk}g^{jk} = D n_i$ and given by equation (4.3) shall be called a D-tensor.

Remarks

It is to be noticed that D_{ijk} , which looks similar to C_{ijk} exists for $n \ge 3$ only.

Equation (4.3) can alternatively be expressed as

$$\mathbf{D}_{ijk} = \Sigma_{(ijk)} \{ \mathbf{X}_k \ \mathbf{m}_i \mathbf{m}_j + \mathbf{Y}_k \mathbf{n}_i \mathbf{n}_j \}$$
(4.4)

where

$$X_{k} = (1/3) D_{(1)}m_{k} + D_{(3)}n_{k}$$
(4.5)

6

and

$$Y_k = (1/3) D_{(2)} n_k - D_{(1)} m_k$$
(4.6)

Equation (4.3) can also be expressed as

$$D_{ijk} = \sum_{(ijk} \{X_{ij}m_k + Y_{ij}n_k\}$$

$$(4.7)$$

where $X_{ij} = X_i m_j$ and $Y_{ij} = Y_i n_j$.

Now we shall consider some special cases.

Case I

If we assume $D_{ijk} = 0$, equation (4.3) on simplification gives $D_{(2)} = -D_{(3)}$. Conversely, if we assume $D_{(2)} = -D_{(3)}$, in equation (4.3), it gives $D_i = 0$. Hence we have:

Theorem

The necessary and sufficient condition for the vector D_i to vanish in F^3 is given by $D_{(2)} = -D_{(3)}$.

Case II. If in a special case we assume that $D_{(1)} = 0$, $D_{(3)} = 0$, $D_{(2)} = D$, equation (4.3) can be expressed as

$$\mathbf{D}_{ijk} = \mathbf{D}^{-2} \, \mathbf{D}_j \mathbf{D}_j \, \mathbf{D}_k \tag{4.8}$$

Conversely, if we assume (4.8), it leads to $D_{(1)} = 0$, $D_{(3)} = 0$, $D_{(2)} = D$. Hence we have:

Theorem

The necessary and sufficient condition for D_{ijk} to be expressed as in (4.7), in a three dimensional Finsler space F^3 , is that $D_{(1)} = 0$, $D_{(3)} = 0$, $D_{(2)} = D$.

Case III

If $D_{(1)} = 0$, $D_{(2)} = D_{(3)} = D/2$, equation (4.3) gives $D_{ijk} = (D/2)[n_i n_j n_k + \Sigma_{(ijk)} \{m_i m_j n_k\}]$ (4.9) Hence we have:

Theorem

In a three dimensional Finsler space F^3 , if $D_{(1)} = 0$, $D_{(2)} = D_{(3)} = D/2$, D_{ijk} is given by (4.9).

 $D_{ijk} = D \Sigma_{(ijk)} \{ m_i m_j n_k \}$ (4.10)

Conversely, if D_{ijk} is given by (4.10), equation (4.3) gives $D = D_{(3)}$, $D_{(2)} = 0$ and

Case IV. If $D_{(1)} = 0$, $D_{(2)} = 0$, $D_{(3)} = D$, equation (4.3) gives

$$D_{(1)} [m_i m_j m_k - \Sigma_{(ijk)} \{m_i n_j n_k\}] = 0$$
(4.11)

7

If we multiply equation (4.11) by m^i , we get $D_{(1)}U_{jk} = 0$ and if we multiply equation (4.11) by n^i , we get $D_{(1)}T_{jk} = 0$. As we know that neither U_{jk} nor T_{jk} vanish, therefore $D_{(1)} = 0$. Hence we have:

Theorem

In a three dimensional Finsler space F^3 , the necessary and sufficient condition for $D_{(1)} = 0$, $D_{(2)} = 0$ and $D_{(3)} = D$, is that D_{ijk} is represented by (4.10)

PROPERTIES OF D-TENSOR IN F³

Let
$$D_{ijk}m^{\kappa} = D_{ij}$$
 and $D_{ijk}n^{\kappa} = D_{ij}$, then from equation (4.3) similar to Shimada [7] and Rastogi [5], we can obtain
 $D_{ij} = D_{(1)}U_{ij} + D_{(3)}T_{ij}$
(5.1)

and

$$^{*}D_{ij} = D_{(2)}n_{i}n_{j} - D_{(1)}T_{ij} + D_{(3)}m_{i}m_{j}$$
(5.2)

Remark

If we take ' $D_{ij} = 0$, equation (5.1) gives $D_{(1)} = 0$, $D_{(3)} = 0$ and $D_{(2)} = D$, while for * $D_{ij} = 0$, $D_{(1)} = 0$, $D_{(3)} = 0$ and $D_{(2)} = 0$.

From equations (5.1) and (5.2) we can observe that tensors D_{ij} and D_{ij} are symmetric in i and j and also satisfy $D_{ij}g^{ij} = 0$ and $D_{ij}g^{ij} = D$. Hence we have:

Theorem

In a three- dimensional Finsler space F^3 , the tensors ' D_{ij} and * D_{ij} satisfy ' $D_{ij}g^{ij} = 0$ and * $D_{ij}g^{ij} = D$.

Further from equations (5.1) and (5.2) we can obtain

$$^{\prime}D_{ij}m^{J} = D_{(1)}m_{i} + D_{(3)}n_{i}, ^{\prime}D_{ij}m^{J}m^{i} = D_{(1)}, ^{\prime}D_{ij}m^{J}n^{i} = D_{(3)}$$
(5.3)

$$*D_{ij}m^{j} = D_{(3)}m_{i} - D_{(1)}n_{i}, *D_{ij}m^{j}m^{i} = D_{(3)}, *D_{ij}m^{j}n^{i} = -D_{(1)}$$
(5.4)

Using equation (1.3), from equation (5.1) and (5.2) we can obtain

$$'D_{ij/k} = \{ (D_{(3)/k} + 2D_{(1)}h_k \} T_{ij} + \{ D_{(1)/k} - 2 D_{(3)}h_k \} V_{ij}$$
(5.5)

and

$$*D_{ij'k} = (D_{(2)/k} - 2 D_{(1)}h_k) n_i n_j + (D_{(3)/k} + 2 D_{(1)}h_k) m_i m_j$$

$$- (D_{(1)/k} + D_{(2)}h_k - D_{(3)}h_k) T_{ij}$$
(5.6)

From equations (5.5) and (5.6), we can obtain

$${}^{'}D_{ij'k}l^{k} = \{ (D_{(3)'0} + 2D_{(1)}h_{0}\} T_{ij} + \{ D_{(1)'0} - 2 D_{(3)}h_{0} \} U_{ij}$$
(5.7)

$$*D_{ij'k}l^{k} = (D_{(2)/0} - 2 D_{(1)} h_{0}) n_{i}n_{j} + (D_{(3)/0} + 2 D_{(1)} h_{0}) m_{i}m_{j}$$

- $(D_{(1)/0} + D_{(2)}h_{0} - D_{(3)}h_{0}) T_{ij}$ (5.8)

and

$${}^{'}\mathrm{D}_{ij'k}l^{j} = 0, \ ^{*}\mathrm{D}_{ij'k}l^{j} = 0.$$
(5.9)

Hence we have:

Theorem

In a three -dimensional Finsler space F^3 , h-covariant derivatives of tensors ' D_{ij} and * D_{ij} satisfy equations (5.7), (5.8) and (5.9).

Using equation (1.4), from equation (5.1), we can obtain

$^{*}D_{ij//k} = \{ D_{(3)//k} + 2 L^{-1} D_{(1)} v_{k} \} m_{i} m_{j} + (D_{(2)//k} - 2L^{-1} D_{(1)} v_{k}) n_{i} n_{j}$	
- $\{D_{(1)//k} + L^{-1}(D_{(2)}-D_{(3)}) v_k\} T_{ij} + L^{-1}[(D_{(1)}m_k - D_{(2)}n_k) B_{ij}$	
- $(D_{(3)}m_k - D_{(1)}n_k) A_{ij}]$	(5.11)
From equations (5.10) and (5.11) , we can obtain	
$D_{ij/k}l^{j} = -L^{-1}[D_{(3)}T_{ij} + D_{(1)}U_{ij}]$	(5.12)
$D_{ij//0} = D_{(3)//0} T_{ij} + D_{(1)//0} U_{ij}$	(5.13)
and	
$D_{ij/k}l^{j} = L^{-1}[D_{(1)}T_{ij} - D_{(2)}n_in_k - D_{(3)}m_im_k]$	(5.14)
${}^{*}D_{ij/\!0} = D_{(2)/\!/0}n_in_j - D_{(1)/\!/0}T_{ij} + D_{(3)/\!/0}m_im_j$	(5.15)
From equations (5.1) and (5.12), we can obtain	
$D_{ij/k}l^{j} + L^{-1}D_{ik} = 0$	(5.16)

Hence we have:

9

Theorem

In a three- dimensional Finsler space F^3 , the tensor D_{ik} satisfies equation (5.16).

Similarly from equations (5.2) and (5.14), we can obtain

$$*\mathbf{D}_{ii/k}\mathbf{l}^{j} + \mathbf{L}^{-1*}\mathbf{D}_{ik} = 0 \tag{5.17}$$

Hence we have:

Theorem

In a three - dimensional Finsler space F^3 , the tensor ^{**}D_{ik} satisfies equation (5.17).

D-REDUCIBLE FINSLER SPACES

Following calculations similar to the one used by Matsumoto [2], in analogy to the definition of C-reducible Finsler space, we here define D-reducible Finsler space.

Definition

A Finsler space F^3 , shall be called D-reducible Finsler space if the tensor D_{ijk} is defined as

$$\mathbf{D}_{ijk} = (1/4) \sum_{(ijk)} \{ \mathbf{h}_{ij} \, \mathbf{D}_k \}$$
(6.1)

Example. Let us consider a Finsler space F^3 , in which $D_{(1)} = 0$, $D_{(2)} = (3/4)$ D and $D_{(3)} = (1/4)$ D, then the tensor D_{ijk} is expressible as

$$D_{ijk} = D \left[(3/4) n_i n_j n_k + (1/4) \Sigma_{(ijk)} \{ m_i m_j n_k \} \right]$$
(6.2)

Equation (6.2) is nothing but equation (6.1) written in alternative form.

From equation (6.2) , we can obtain by virtue of equation (3.1)	
'D _{ij} = (1/4) D T _{ij}	(6.3)
$D_{ij} = (1/4) D (h_{ij} + 2 n_i n_j)$	(6.4)
Using equations (1.3) and (4.3) we can obtain on simplification	
$D_{ijk/r} = \{ D_{(1)/r} - 3 D_{(3)}h_r \} m_i m_j m_k + (D_{(2)/r} - 3D_{(1)}h_r) n_i n_j n_k$	
$+ \sum_{(ijk)} [\{ (D_{(3)/r} + 3 D_{(1)}h_r \} m_i m_j n_k - \{ (D_{(1)/r} + D_{(2)}h_r - 2 D_{(3)}h_r) \} m_i n_j n_k]$	(6.5)
If we define $Q_{ijk} = D_{ijk/0}$, from equation (6.5), we get	
$Q_{ijk} = \{ D_{(1) \ / \ 0} - 3 \ D_{(3)} \ h_0 \} \ m_i m_j m_k + (D_{(2) \ / \ 0} - 3 D_{(1)} h_0) \ n_i n_j n_k$	
10	
$+ \sum_{(ijk)} [\{ D_{(3) 0} + 3 D_{(1)}h_0 \} m_i m_j n_k - \{ D_{(1) 0} + (D_{(2)} - 2 D_{(3)})h_0) \} m_i n_j n_k]$	(6.6)

If we assume that the tensor Q_{ijk} is proportional to D_{ijk} , i.e., $Q_{ijk} = \lambda D_{ijk}$, where λ is a scalar and is coefficient of proportionality, from equations (4.3) and (6.6), by comparing coefficients, we can obtain

- $D_{(1)/0} 3 D_{(3)} h_0 = \lambda D_{(1)}$, (ii) $D_{(2)/0} 3D_{(1)}h_0 = \lambda D_{(2)}$,
- $D_{(3)/0} + 3 D_{(1)}h_0 = \lambda D_{(3)}$, (iv) $D_{(1)/0} + D_{(2)}h_0 2 D_{(3)}h_0 = \lambda D_{(1)}$

From (i) and (iv), we can obtain $(D_{(2)} + D_{(3)})h_0 = 0$ and from (ii) and (iii), we get

 $D_{(2)/0} + D_{(3)/0} = \lambda (D_{(2)} + D_{(3)})$. Since $h_0 \neq 0$, it implies $D_{(2)} + D_{(3)} = 0$, i.e., D = 0,

which will imply $D_i = 0$ and $D_{ijk} = 0$. Hence we have:

Theorem

In a three - dimensional Finsler space, if we assume that $Q_{ijk} = \lambda D_{ijk}$,

then both Q_{ijk} and D_{ijk} vanish.

From equation (6.6) by virtue of $Q_{ijk}g^{jk} = Q_i$, we can obtain $Q_i = D_{/0}n_i - D_{/0}n_i$

D h₀ m_i. For a D-reducible Finsler space F^3 , by virtue of (6.2), the tensor Q_{ijk} can

be expressed as

$$Q_{ijk} = -(1/4) D h_0 \sum_{(ijk)} \{h_{ij} m_k\}$$
(6.7)

From the definition of C-reducible Finsler space F^3 and equation (6.7), we can obtain

C Q_{ijk} + D h_0C_{ijk} = 0. Hence we have:

Theorem

In a C-reducible Finsler space F^3 , torsion tensor C_{ijk} , and in a D-reducible Finsler space F^3 torsion tensor Q_{ijk}

17

satisfy C $Q_{ijk} + D h_0 C_{ijk} = 0$.

Similar to the definition of P-reducibility, we can give following:

Definition

A Finsler space F^3 , shall be called Q-reducible if the Q-tensor is given by

$$Q_{ijk} = (1/4) \sum_{(ijk)} \{ h_{ij} Q_k \}$$
(6.8)

Equation (6.8) can alternatively be expressed as

$$Q_{ijk} = (D_{/0}/4) (h_{ij}n_k + h_{jk}n_i + h_{ki}n_j) - (Dh_{0}/4)(h_{ij}m_k + h_{jk}m_i + h_{ki}m_j)$$
(6.9)

11

If a Q-reducible space is both C-reducible and D-reducible, from equation (6.9), we can obtain CDQ_{ijk} = - $D^2 h_0 C_{ijk}$ + $D_{/0}C D_{ijk}$. Hence we have:

Theorem

A three - dimensional Q-reducible Finsler space F^3 , which is both D-reducible and C-reducible satisfies $CDQ_{ijk} = -D^2 h_0 C_{ijk} + D_{/0}C D_{ijk}$.

TENSOR D'_{ijkh}.

In analogy to the definition of v-curvature tensor S_{ijkh} based on torsion tensor C_{ijk} , we define here the tensor D'_{ijkh} based on D_{ijk} as follows:

$$D'_{ijkh} = D_{ihr}D^{r}_{jk} - D_{ikr}D^{r}_{jh}$$

$$(7.1)$$

Substituting the value of D_{ijk} from equation (2.2) in (7.1), we obtain on simplification

$$D'_{ijkh} = (2D_{(1)}^{2} - D_{(2)} D_{(3)} + D_{(3)}^{2}) (m_{k}n_{h} - m_{h}n_{k}) (m_{i}n_{j} - m_{j}n_{i})$$
(7.2)

We know that in F^3 , the tensor $h_{ik}h_{jh} - h_{ih}h_{jk} = (m_in_j - m_jn_i) (m_kn_h - m_hn_k)$, therefore equation (7.2) can also be expressed as

$$D'_{ijkh} = (2D_{(1)}^{2} - D_{(2)} D_{(3)} + D_{(3)}^{2}) (h_{ik}h_{jh} - h_{ih}h_{jk})$$
(7.3)

Following proposition (29.2) of Matsumoto [2], we can obtain

$$D'_{ijkh} = D^* (h_{ik}h_{jh} - h_{ih}h_{jk})$$
(7.4)

where D* is a (0)p-homogeneous scalar satisfying

$$\mathbf{D}^* = (2 \mathbf{D}_{(1)}^2 - \mathbf{D}_{(2)} \mathbf{D}_{(3)} + \mathbf{D}_{(3)}^2)$$
(7.5)

Hence we have:

Theorem

In a three- dimensional Finsler space F^3 , there exists a tensor D'_{ijkh} given by (7.2) such that its scalar D^* is given by (7.5).

From equation (7.2), we can observe that $D'_{ijkh} = 0$ implies either $h_{ij} = 0$, i.e., F^3 is a Riemannian space or $(2 D_{(1)}^2 - D_{(2)} D_{(3)} + D_{(3)}^2) = 0$. Hence we have:

Theorem

In a three- dimensional non-Riemannian Finsler space F^3 , the necessary and sufficient condition for the tensor D'_{ijkh} to vanish is given by $D^*=0$.

From $D'_{ijkh}g^{jh} = D'_{ik}$ and $D'_{ik}g^{ik} = D'$, we can obtain from equation (7.3)

 $D'_{ij} = D^*h_{ij}$, $D = 2D^*$. Hence we have:

12

Theorem

In a three- dimensional non-Riemannian Finsler space D'-Ricci tensorand

D'-scalar satisfyD'_{ij} =D* h_{ij} , $\vec{D} = 2D*$.

In a D-reducible Finsler space equation (7.2) is given by

$$D'_{ijkh} = -(1/8) D^{2}(h_{ik}h_{jh} - h_{ih}h_{jk})$$
(7.6)

which implies $D'_{ij} = -(1/8) D^2 h_{ij}$ and $D' = -(1/4) D^2$.

TENSOR Q_{ijkh}

Corresponding to tensor $Q_{ijk},$ we define tensor Q_{ijkh} as follows:

$$Q_{ijkh} = Q_{ihr}Q^{r}_{jk} - Q_{ikr}Q^{r}_{jh}$$
(8.1)

Substituting value of Q_{ihr} etc. from equation (4.3) in (8.1) and solving we get

$$Q_{ijkh} = (A_3^2 + A_4^2 + A_1 A_4 - A_2 A_3) (m_j n_i - m_i n_j)(m_h n_k - m_k n_h),$$
(8.2)

where

$$A_1 = D_{(1)'0} - 3D_{(3)} h_0, A_2 = D_{(2)'0} - 3 D_{(1)} h_0$$

$$A_{3} = D_{(3)/0} + 3D_{(1)}h_{0}, A_{4} = D_{(1)/0} + (D_{(2)} 2 D_{(3)})h_{0}$$
(8.3)

From equation (8.3), we can observe that

$$A_{4} - A_{1} = (D_{(1)} + D_{(3)}) h_{0}, A_{2} + A_{3} = D_{(2)/0} + D_{(3)/0}$$
(8.4)

Hence we have:

Theorem

In a three- dimensional Finsler space F^3 , tensor Q_{ijkh} is given by(8.2), such that its coefficients satisfy (8.4).

Comparing equations (7.2) and (8.2), we can obtain

$$Q_{ijkh} = (A_3^2 + A_4^2 + A_1 A_4 - A_2 A_3) (2D_{(1)}^2 - D_{(2)} D_{(3)} + D_{(3)}^2)^{-1} D_{ijkh}$$
(8.5)

Hence we can obtain

Theorem

In a three -dimensional Finsler space F³, the tensors Q_{ijkh} and D_{ijkh} are proportional to each other.

For a D-reducible Finsler space, $A_1 = -(3/4) D h_0$, $A_2 = 0$, $A_3 = 0$, $A_4 = (1/4) D h_0$, therefore equation (8.2) gives

13

$$Q_{ijkh} = -(1/8) D^2 h_0^2 (m_j n_i - m_i n_j)(m_h n_k - m_k n_h)$$
(8.6)

which implies $Q_{ijkh}g^{jh} = Q_{ik} = -(1/8) D^2 h_0^2 h_{ik}$ and $Q_{ik}g^{ik} = -(1/4) D^2 h_0^2$.

Hence we have:

Theorem

In a three -dimensional D-reducible Finsler space F^3 , tensor Q_{ijkh} is expressed by equation (8.6).

For a Q-reducible Finsler space F^3 , $A_1 = -(3/4) D h_0$, $A_2 = (3/4) D_{/0}$, $A_3 = (1/4) D_{/0}$ and $A_4 = (1/4) D h_0$, therefore equation (8.2) can be expressed as

 $Q_{ijkh} = \text{-} (1/8) (\left. D_{/0}^{2} + D^{2} h_{0}^{2} \right) (\ m_{j} n_{i} - m_{i} n_{j}) (m_{h} n_{k} - m_{k} n_{h}) \ (8.7)$

Hence we have:

Theorem

In a three- dimensional Q-reducible Finsler space F^3 , tensor Q_{ijkh} is expressed by equation (8.7).

REFERENCES

- 1. Cartan, E.: Les espaces de Finsler, Actualites 79, Paris, 1934.
- 2. Matsumoto, M.: On C-reducible Finsler space, Tensor, N.S., 24(1972), 29-37.
- 3. Matsumoto, M.: Foundations of Finsler Geometry and special Finsler spaces, Kaiseisha Press, Otsu, 520, Japan, 1986.
- 4. Rastogi, S.C.: On some new tensors and their properties in a Finsler space, J.T.S.I., 8, 9, 10(1990-92), 12-21.
- 5. Rastogi, S.C.: T3-like Finsler spaces, J.T.S., 2(2008), 49-65.
- 6. Rund, H.: The Differential geometry of Finsler s[paces, Springer-Verlag, Berlin, 1959.
- 7. Shimada, H.: on the Ricci tensors of particular Finsler spaces, J. Korean Math. Soc., 14, 1(1977), 41-63.